Multiple roles of CLAN (caspase-associated recruitment domain, leucine-rich repeat, and NAIP CIIA HET-E, and TP1-containing protein) in the mammalian innate immune response.
نویسندگان
چکیده
NAIP CIIA HET-E and TP1 (NACHT) family proteins are involved in sensing intracellular pathogens or pathogen-derived molecules, triggering host defense responses resulting in caspase-mediated processing of proinflammatory cytokines and NF-kappaB activation. Caspase-associated recruitment domain, leucine-rich repeat, and NACHT-containing protein (CLAN), also known as ICE protease-activating factor, belongs to a branch of the NACHT family that contains proteins carrying caspase-associated recruitment domains (CARDs) and leucine-rich repeats (LRRs). By using gene transfer and RNA-interference approaches, we demonstrate in this study that CLAN modulates endogenous caspase-1 activation and subsequent IL-1beta secretion from human macrophages after exposure to LPS, peptidoglycan, and pathogenic bacteria. CLAN was also found to mediate a direct antibacterial effect within macrophages after Salmonella infection and to sensitize host cells to Salmonella-induced cell death through a caspase-1-independent mechanism. These results indicate that CLAN contributes to several biological processes central to host defense, suggesting a prominent role for this NACHT family member in innate immunity.
منابع مشابه
The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations.
Innate immunity in corals is of special interest not only in the context of self-defense but also in relation to the establishment and collapse of their obligate symbiosis with dinoflagellates of the genus Symbiodinium. In innate immunity system of vertebrates, approximately 20 tripartite nucleotide oligomerization domain (NOD)-like receptor proteins that are defined by the presence of a NAIP, ...
متن کاملNLR proteins: integral members of innate immunity and mediators of inflammatory diseases.
The innate immune system is the first line of defense against microorganisms and is conserved in plants and animals. The nucleotide-binding domain, leucine rich containing (NLR) protein family is a recent addition to the members of innate immunity effector molecules. These proteins are characterized by a central oligomerization domain, termed nucleotide-binding domain (NBD) and a protein intera...
متن کاملNods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation.
The innate immune system is the most ancestral and ubiquitous system of defence against microbial infection. The microbial sensing proteins involved in innate immunity recognize conserved and often structural components of microorganisms. One class of these pattern-recognition molecules, the Toll-like receptors (TLRs), are involved in detection of microbes in the extracellular compartment where...
متن کاملThe NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events.
There are intriguing parallels between plants and animals, with respect to the structures of their innate immune receptors, that suggest universal principles of innate immunity. The cytosolic nucleotide binding site-leucine rich repeat (NBS-LRR) resistance proteins of plants (R-proteins) and the so-called NOD-like receptors of animals (NLRs) share a domain architecture that includes a STAND (si...
متن کاملBroad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome.
Inflammasomes are cytosolic multiprotein complexes that initiate host defense against bacterial pathogens by activating caspase-1-dependent cytokine secretion and cell death. In mice, specific nucleotide-binding domain, leucine-rich repeat-containing family, apoptosis inhibitory proteins (NAIPs) activate the nucleotide-binding domain, leucine-rich repeat-containing family, CARD domain-containin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 173 10 شماره
صفحات -
تاریخ انتشار 2004